DI-LR Strat
Comments 8

Are you prepared for Mathematical Reasoning in DI-LR?

In the previous post, we covered the Dos and Don’ts of representing or structuring data and how to prioritise conditions.

In this post, we will take a look at the type of reasoning sets that pose major challenges to the average test-taker.


Be ready for Numerical and Algebraic Reasoning

When test-takers say they are finding a DI or LR a set tough, what they mean is that they are not seeing the following in the sets they encounter:

  • closed DI sets around pie-charts, graphs, tables
  • LR sets around arrangements with simple plugin conditions

What stumps most people, is sets that are NOT direct calculation and NOT direct arrangement.

These sets are usually, Open Sets, which we defined in the previous post, that blur the line between DI and LR and require you to be able to venture into territory beyond what is typical DI and LR — numerical & algebraic reasoning.

Numerical Reasoning sets require you to test out the various numbers that a particular variable, say production in a particular month, can take given the conditions. The only way you can proceed by listing, testing & eliminating possibilities given the conditions, making the solving of these sets very similar to the solving of Sudoku.

Sets that involve Algebraic Reasoning, require you to take one unknown value to be X and then use the conditions to write the other values in terms of X and use the conditions to determine things about X:

  • The precise value of X or
  • The maximum and minimum values it can take

The key to cracking such sets is to be open to two things:

  • the use of algebra or Sudoku style reasoning
  • the possibility that the set will remain open even after solving and questions might not be direct but those involve that ranges or inequalities

Once you have changed your outlook and are willing to explore these non-standard lines of reasoning and explore the use of algebra you will take your DI-LR skills to the next level.

Let’s take a DI set from a SimCAT that we had classified as a must-solve.

SimCAT 2 - DI 2

The only thing you need to crack this is to use algebra and be comfortable with the set remaining an OPEN Set even after the solving.

Once you use the basic conditions and take one of the values as X, your representation should look like this.

photo 4.JPG

Once you calculate the value of X and fill in the remaining values the table should look like this.

photo 5.JPG

From here on you should be able to answer all the questions correctly by just ensuring that you read what is asked for, properly, without being in a hurry to rush to the next set.


Decoding my favourite CAT LR set of all time

As I mentioned in my previous post my favourite LR set is from CAT 2006 — The Erdös Number set. Before I wax eloquent about it, go ahead read the set and give it a solid try.

Mathematicians are assigned a number called Erdös number, (named after the famous mathematician, Paul Erdös). Only Paul Erdös himself has an Erdös number of zero. Any mathematician who has written a research paper with Erdös has an Erdös number of 1. For other mathematicians, the calculation of his/her Erdös number is illustrated below:

Suppose that a mathematician X has co-authored papers with several other mathematicians. From among them, mathematician Y has the smallest Erdös number. Let the Erdös number of Y be y.

Then X has an Erdös number of y + 1. Hence any mathematician with no co-authorship chain connected to Erdös has an Erdös number of infinity.

In a seven day long mini-conference organized in memory of Paul Erdös, a close group of eight mathematicians, call them A, B, C, D, E, F, G, and H, discussed some research problems.

  • At the beginning of the conference, A was the only participant who had an infinite Erdös number.
  • Nobody had an Erdös number less than that of F.
  • On the third day of the conference, F co-authored a paper jointly with A and C. This reduced the average Erdös number of the group of eight mathematicians to 3. The Erdös numbers of B, D, E, G, and H remained unchanged with the writing of this paper. Further, no other co-authorship among any three members would have reduced the average Erdös number of the group of eight to as low as 3.
  • At the end of the third day, five members of this group had identical Erdös numbers while the other three had Erdös numbers distinct from each other.
  • On the fifth day, E co-authored a paper with F which reduced the group‘s average Erdös number by 0.5. The Erdös numbers of the remaining six were unchanged with the writing of this paper.
  • No other paper was written during the conference.

What makes this set so unique?

  • The concept is absolutely novel in the context of CAT Logical Reasoning Sets — something that is not remotely related to anything that one has seen before.
  • There is no table and hence one has to really give some thought on how to represent the data.
  • Not a single condition is a plugin condition, every single condition is a deductive condition.
  • It is an open set and not a closed set.

After solving it in 2006, recently I tried to solve this again, albeit with a small challenge that I set myself — to solve this completely without putting pen on paper.

So here is how one can go about logically breaking open this set.

  • No one had an Erdos number lower than F so we can take his Erdos number as X and proceed since he is the only one who authored papers with the others during the conference
  • When F authors papers with A and C, on the 3rd day, their Erdos numbers become X+1 and X+1
  • When he does this the average of the group comes down to 3. So the total of the group becomes 24 since there are 8 people in the group.
  • When F authors a paper with E, on the 5th day, the average of the group comes down by 0.5, which means that the total decreases by 4 (average from 3 to 2.5 so total from 24 to 20, or directly by multiplying the decrease, 0.5, with 8)
  • This decrease is only due to the decrease in the Erdos number of E after writing a paper with F since no other papers were written.
  • After writing a paper with F his Erdos number of E would have become X + 1, since it decreased by 4, before writing it should have been X + 5.

So now we have some of the values for each of these days.

After Day 3 we know that

A = X + 1, C = X + 1, E = X + 5, F = X; TOTAL = 24

After Day 5

A = X + 1, C = X + 1, E = X + 1, F = X; TOTAL = 20

  • We also know that at the end of Day 3 five of people had the same Erdos number that means five of the values were the same.
  • We know 4 values and we do not know 4 values, B, D, G, H
  • What can be the equal value?
  • It has to be among the three values we know, X, X+1 or X+5 since there are only 4 values we don’t know and there are 5 equal values.
  • Also, we know that apart from the equal values all the remaining three values are different, so 5 equal values, 3 different values.
  • So the equal value has to be X+1, otherwise the apart from the five equal values, there will be two X + 1’s, the values of A and C.
  • So the values we now know at the end of Day 3 are X, X+1, X+1, X+1, X+1, X+1, X + 5 and one unknown value.
  • The total at the end of the Day 3 is 24. So, 7x + 10 + Unknown Value = 24, or 7x + Unknown Value = 14, hence X has to be 1 since unknown value cannot be 0 or a negative value
  • If X is 1 then the Unknown value is 7.
  • The values of A and C are 2 and E is 6 to begin with and changes to 2 on the 5th day.
  • The catch is that we do not know who has the Erdos number of 7

Now you can answer the set.

The person having the largest Erdös number at the end of the conference must have had Erdös number (at that time):

(1) 5
(2) 7
(3) 9
(4) 14
(5) 15

How many participants in the conference did not change their Erdös number during the conference?

(1) 2
(2) 3
(3) 4
(4) 5
(5) Cannot be determined

The Erdös number of E at the beginning of the conference was:
(1) 2
(2) 5
(3) 6
(4) 7
(5) Cannot be determined

How many participants had the same Erdös number at the beginning of the conference?
(1) 5
(2) 8
(3) 2
(4) 3
(5) Cannot be determined


If you see it has all the atypical qualities of tough LRs — the need to use algebra and at some point, the need to test and eliminate numbers (7X+ Unknown = 14).

But you also realize that if you are open to viewing the set for what it is and do not expect it to yield to you automatically, you can solve the set.

The best part about this set is that it is based on a true story!

Paul Erdos was a famous, eccentric mathematician who believed that mathematics is a social activity and hence always co-authored, or rather solved, mathematical problems with this friends and the Erdos number was instituted by his friends as a homage to him. You should read up the Wiki Entry on him, here is an excerpt from the same.

Possessions meant little to Erdős; most of his belongings would fit in a suitcase, as dictated by his itinerant lifestyle. Awards and other earnings were generally donated to people in need and various worthy causes. He spent most of his life as a vagabond, traveling between scientific conferences, universities and the homes of colleagues all over the world. He earned enough in stipends from universities as a guest lecturer, and from various mathematical awards to fund his travels and basic needs; money left over he used to fund cash prizes for proofs of “Erdős problems”. He would typically show up at a colleague’s doorstep and announce “my brain is open”, staying long enough to collaborate on a few papers before moving on a few days later. In many cases, he would ask the current collaborator about whom to visit next.

Another roof, another proof – Paul Erdos

Let’s keep our brains open!

8 Comments

  1. Anmol says

    Thank you sir for this post
    Quick question – How do we decide if we have to recreate tables in DILR or not to make the solution process more smooth(especially DI)?

    Like

    • Hi Amol,

      A few more posts and it should be clearer. A few rules:

      1. Draw or redraw a table only if necessary, especially on DI
      2. And how to draw depends on what is required, most of the time a table itself might not be required but just writing down things the things to be determined properly.

      These things are better demonstrated — my DI-LR Last Mile To CAT session for IMS students (who are eligible for the same) will cover this in great detail.

      Hope this helps,

      All the best!

      Like

  2. Rahul says

    sir i was searching about Bschool which does not have a caste-based reservation.
    Is it true that MDI, XLRI, SPJIMR, IMI, IMT, SIBM (except sc/st), and NMIMS do not have any reservations? would be happy if you can suggest more 😉

    Regards,
    Rahul Vaidya
    (Unfortunately GEM)

    Like

  3. VEDARTH says

    Hello sir,
    I started my preparation in last November but due to college projects and internships I wasn’t able to prepare. But now i am have started preparation again is it possible to crack BLACKI in such less time ? Being a GEM have weak foot in VARC. Can u please guide me on taking mocks i am bit afraid to give one.
    Regards
    VEDARTH

    Like

    • Hi Vedarth,

      Well, it will be tough to make any generic comment in terms of is there enough time to crack since it depends on where you are right now in all three sections. For example, if you are below 80 percentile in all three sections, it might be a tough ask but if you are above 90 in 2 then it is definitely a do-able task.

      The other factor is how fast you can pick up and learn things. For example, some students figure things out in terms of strategy and timing and selection based on one webinar, they grasp and master VA techniques very quickly but others do not.

      Irrespective of the answer to the question — is there is enough to crack it — it makes a lot of sense to see how much you can improve over your current abilities and get the best score and percentile you can this year. Whatever percentile increase you achieve in the next three months will mean that much less distance to cover in your next attempt if you happen to need one.

      And lastly, the most important thing is to have no fear about taking exams since there is no way out from that. So, there is no point in waiting for the syllabus to get over and stuff; it makes sense to take at least one SimCAT a week starting from the first one.

      Before that watch the SimCAT Strategy videos on the Channel TAB of myIMS, the Masterclasses, and the video solutions of SimCATs.

      Hope this helps,

      All the best!

      Like

  4. Satish says

    Thanks for the post sir.
    The Erdös number set was a good set. I had a doubt regarding one of the questions. At the beginning of the conference, we know that A had a Erdös number of infinite, but nowhere in the question they have mentioned anything about the initial Erdös score of C. It could be that the initial score of C was already 2. (How could we rule out this possibility).
    The point I’m trying to make is, if it is infact possible, then coming to the 4th Question of the set, which is:
    How many participants had the same Erdös number at the beginning of the conference?
    (1) 5
    (2) 8
    (3) 2
    (4) 3
    (5) Cannot be determined

    If we consider the possibility of C having initial Erdös Number as ‘2’ and it remained unchanged after publishing a paper co-authored with F, then the answer to the last question could be either 3 or 4. Am I missing something here?

    Thanks & Regards,
    Satish

    Like

    • Hi Satish,

      Glad you liked the set. Read the third condition once again and work TITA implications you will know why C have been 2 to start with.

      All the best!

      Like

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.